

Pressure Vessel Engineering Ltd. ASME Calculation • CRN Services • Finite Element Analysis • Solid Modeling & Drafting

Design Conditions:

Code:	ASME VIII-2
Year:	2013
Addenda:	-
MAWP:	420 psi
MEAWP:	0 psi
Max. Temp.:	125 °F
MDMT:	- 20 °F
MDMT Press.:	420 psi
Corrosion Allowance:	0.125 in
Hydrotest:	601 psi

Conclusion:

A linear elastic finite element analysis is performed on the head assembly in accordance with ASME VIII-2 Part 5. The head design is acceptable for ASME VIII-2 service.

This report is the same as model and setup as example E5.2.1 of ASME PTB-3-2010.

Finite Element Analysis Report - VIII-2

Cust: Pressure Vessel Engineering Ltd. File: PVEfea-9128-2.0 Desc: ASME Div 2 FEA Verification Dwg: PVEdwg-9128-1.0 Date: June 5, 2015

Author: Cameron Moore, P.Eng. Reviewer: Ben Vanderloo, P.Eng.

Pressure Vessel Engineering Ltd. 120 Randall Drive Suite B, Waterloo, Ontario, Canada, N2V 1C6

Phone: 519-880-9808 • Fax: 519-880-9810 • Web: www.pveng.com

Engineering Notes

Notes:

Rev	Description	Date	Initials
0	Release	6/5/2015	CBM

Table of Contents

Cover	1
Engineering Notes	2
Table of Contents	3
Executive Summary	4
Stress Limits	5
Model	6
Mesh	7
Restraints	8
Loads	9
Reaction Forces	10
Displacement	11
Stress	12

ISO Clipped Stress	13
SCL #1	14
SCL #2	15
SCL #3	16
SCL #4	17
SCL #5	18
SCL #6	19
SCL #7	20
SCL #8	21
SCL #9	22
Local Plastic Collapse	23

Executive Summary

Goal:

A finite element analysis (FEA) is selected to validate the head design per ASME VIII-2 Part 5. A linear elastic analysis is selected and is performed in accordance with 5.2.2.

Summary Conclusions:

Analysis Software

SolidWorks Simulation 2015 SP2.0

Analysis Type

A static linear elastic study is performed using small displacement theory.

Materials

Material properties used in this report are obtained from ASME II-D. Stress classification limits are set in accordance with ASME VIII-2 Figure 5.1.

Model Information

An axisymmetric model is used for the analysis; 0.125" corrosion allowance is removed from the internal surfaces. A second order triangular planar mesh is applied. Contact elements are treated as bonded. Reported error is five percent as per CSA B51 Annex J. This validates the mesh selected, the model may be used for analysis.

Restraints & Loads

A symmetry restraint is applied in the axial direction. 420 psi internal pressure plus the exit pressure load on the top flange is applied. The reported reaction forces match the theoretical reaction forces. The model is in balance and restrained from rigid body motion.

Results

The direction of displacement is as expected. All observed stresses are below their respective allowable limits.

Analysis Conclusion:

A linear elastic finite element analysis is performed on the head assembly in accordance with ASME VIII-2 Part 5. The head design is acceptable for ASME VIII-2 service.

This report is the same as model and setup as example E5.2.1 of ASME PTB-3-2010.

Material Stress Limits ASME VIII-2 Fig 5.1

,

Material Input Chart:

125 Temperature [°F]

	Material 1	Material 2	Material 3	Material 4
Material =	SA-516 70N	SA-105		
Application =	Shell & Head	Forging		
Sm [psi] =	24,550	23,300		
Sy [psi] =	36,850	34,900		
Sya [psi] =	38,000	36,000		
Sta [psi] =	70,000	70,000		
E1 =	1.0	1.0		
E2 =	1.0	1.0		
E [psi] =	28,800,000	29,100,000		
v =	0.30	0.30		
Coef =				
Pm [psi] =	24,550	23,300		
PI [psi] =	36,825	34,950		
PI+Pb [psi] =	36,825	34,950		
PI+Pb+Q [psi] =	73,700	69,900		
Prop. Sources	ASM	IE II-D 2013 Edition	Tables 5A, Y-1, PR	RD, U
Comments	Elastic modulus is	set to match the va	alues shown in E5.2	.1 of ASME PTB-3
Variable Descri	ptions: VIII-2 5.13			
Sm (basic allowable)			Sya (yield strength at an	nbient temp.)
Sta (tensile strength	at ambient temp.)		E (modulus of elasticity)	- IID Table TM-1
E1 (weld efficiency)			v (Poison's ratio) - IID T	able PRD
E2 (casting efficiency	/)		Coef (coefficient of them	mal expansion)
Stress Limit Eq	uations: VIII-2 Figure	5.1		
Pm =	E1*E2*Sm genera	l primary membrane stre	ess limit (material only)	
Pm =	2*Sm general prima	ry membrane stress limi	t (bolting combine opera	tion +seating)
PI =	1.5*E1*E2*Sm local membrane stress limit			
PI+Pb =	1.5*E1*E2*Sm primary membrane + primary bending stress limit (material only)			
PI+Pb =	= 3*Sm primary membrane + primary bending stress limit (bolting combine operation + seating)			

PI+Pb+Q = Max(3*E1*E2*Sm,2*E1*E2*Sy) primary + secondary stress (2*Sy only valid for Sya/Sta <=0.7)

PI+Pb+Q+F = Use fatigue curves peak stress limit

Comments:

(1) Sy material property is not required, more conservative PI+Pb+Q limits might be computed without it.

(2) The thermal expansion coefficient is only required for studies including thermal stresses

(3) Refer to VIII-2 5.15 Figure 5.1 and following for the Pm, PI, Q and F stress limits

(4) Refer to VIII-2 5.14 Table 5.6 for the correct application of the calculated stress limits

(5) Use IID tables 5A and 5B for Sm for VIII-2 studies

(6) Use IID tables 1A and 1B for Sm values (S) for VIII-1 studies

(7) Use B31.1 Table A-1, A-2, A-3 for Sm values for B31.1 studies

(8) Use B31.3 Table A-1 for Sm values for B31.3 studies

(9) 2*Sy PI+Pb+Q not valid when in creep range.

Due to the axi-symmetric profile of the vessel, an axisymmetric solid model is generated. Refer to PVEdwg-9128-1 for dimensions used in the analysis.

Mesh

FEA Mesh

A 1/8 inch second order triangular planar mesh is applied globally to the model.

Mesh Close-Up A close-up of the mesh at the nozzle to head junction is shown.

Restraints

Axisymmetric Restraint

Since an axisymmetric model is analyzed, the model is restrained from translation in the X and Z directions.

Y-Direction Symmetry

A symmetry restraint is applied at the end of the shell to prevent translation of the model in the Y-Direction.

420 psi is applied to all internal surfaces.

Exit Pressure

982.3 psi is the equivalent exit pressure applied to the flange. This accounts for the longitudinal stress present in a closed system. Source PTB-3 Figure E5.2.1-7.

Note that typically this load would be transferred through the bolt holes and generate a larger bending moment.

Reaction Forces ver 7.00

Global Reaction Forces

Global Reaction Forces from analysis 'X' = 0 lb, 'Y' = 2341400 lb, 'Z' = 0 lb Calculated Reaction Forces = Analysis Reaction Forces within 0% Model is balanced, results are valid.

420 P [psi] - Pressure

X Axis: reaction force	es on the YZ plane cause	ed by loads in the X direction	n		
0.000	XArea [in2] - Pressu	irized area on YZ plar	ne		
0.0	XForce [lbs] - Adde	d force in the X direct	ion		
0.000	XReaction [lbs] - Re	eaction force in X dire	ction reported	by FEA program	
TReactionX [lbs] =	XArea*P+XForce	Theoretical X reaction for	prce	0*420+0 =	0
Y Axis: reaction force	es on the XZ plane cause	ed by loads in the Y direction	n		
5574.805	YArea [in2] - Pressu	irized area on XZ plai	ne		
0.0	YForce [lbs] - Adde	d force in the Y direct	ion		
2341400.000	YReaction [lbs] - Re	eaction force in Y dire	ction reported	by FEA program	
TReactionY [lbs] =	YArea*P+YForce	Theoretical Y reaction for	orce	5574.805*420+0 =	2,341,418
ZAxis: reaction force	es on the XY plane cause	ed by loads in the Z direction	n		
0.000	ZArea [in2] - Pressu	rized area on XY plar	ne		
0.0	ZForce [lbs] - Added	d force in the Z directi	on		
0.000	ZReaction [lbs] - Re	eaction force in Z dire	ction reported	by FEA program	
TReactionZ [lbs] =	ZArea*P+ZForce	Theoretical Z reaction fo	rce	0*420+0 =	0
Resultant of react	tion forces in X, Y	and Z:			
TResultant [lbs] =	sqrt(TReactionX^2-	+TReactionY^2+TRea	actionZ^2)	heoretical resultant	
			SQRT(0 [^]	2+2341418^2+0^2) =	2,341,418
Resultant [lbs] =	sqrt(XReaction^2+)	Reaction ² +ZReact	on^2) Actual	resultant	
			SQRT(0^	2+2341400^2+0^2) =	2,341,400
Error [%] =	100*(TResultant-R	esultant)/Resultant	100*(2341418-	2341400)/2341400 =	0.0
CheckError =	abs(Èrror)<2 Err	or should be less than 2%		ABS(0)<2 =	Acceptable
					•

Displacement Model name:Div 2 Sample Model

Model name:Div 2 Sample Model Study name:Static 1(-Default-) Plot type: Static displacement Displacement1 Deformation scale: 100

Displacement Plot

The displacement plot is magnified 100 times to emphasize the displaced shape of the model. The original geometry is superimposed to further emphasize how the model displaces. The displaced shape of the model is as expected.

Stress

66 - 🔘 🙈 - 🕎 -

Model name:Div 2 Sample Model Study name:Static 1(-Default-) Plot type: Static nodal stress Stress1

von Mises Stress

The maximum von Mises stress in the model is 36,353 psi. This stress occurs at the outer head surface adjacent to the nozzle. This is a localized stress and is subject to the local allowable membrane plus bending limit. All general areas are within the general membrane allowable limits of 24,550 psi for the shell and head material and 23,300 psi for the nozzle material.

ISO Clipped Stress Model name:Div 2 Sample Model

ISO Clipped Stress

The von Mises stress plot is ISO Clipped at the 23,300 psi primary general membrane allowable for SA-105 as this is the weaker of the two materials used in the design. This plot shows only stress contours that exceed this limit. All general areas in the model are within the allowable limit and are acceptable. Stresses exceeding this allowable are limited to areas loaded in bending and are subject to a higher allowable.

Pb [psi] =

Peak [psi] =

PI+Pb+Q [psi] =

10,610

18,181

14,386 Acceptable

69,900

SCL #1

Stress classification line 1 is taken through the flange weld. The stress linearization results are below the material stress allowables and are acceptable.

SCL #2

Stress classification line 2 is taken through the upper nozzle transition. The stress linearization results are below the material stress allowables and are acceptable.

Stress Check:

Local	Stress Classifiaction		
SA-105	Material		
	Allowed	Actual	Check
PI [psi] =	34,950	1,196	Acceptable
Pb [psi] =		3,530	
PI+Pb+Q [psi] =	69,900	4,498	Acceptable
Peak [psi] =		4,854	

Stress classification line 3 is taken through the nozzle to shell junction. The stress linearization results are below the material stress allowables and are acceptable.

Stress Check:

Local	Stress Classifiaction		
SA-105	Material		
	Allowed	Actual	Check
PI [psi] =	34,950	15,205	Acceptable
Pb [psi] =		6,072	
PI+Pb+Q [psi] =	69,900	17,153	Acceptable
Peak [psi] =		17,447	

SCL #4

Stress classification line 4 is taken through the shell to nozzle junction. The stress linearization results are below the material stress allowables and are acceptable.

Stress Check:

Local	Stress Classifiaction		
SA-516 70N	Material		
	Allowed	Actual	Check
PI [psi] =	36,825	22,072	Acceptable
Pb [psi] =		18,747	
PI+Pb+Q [psi] =	73,700	32,683	Acceptable
Peak [psi] =		34,762	

Stress classification line 5 is taken through the elliptical head knuckle. The stress linearization results are below the material stress allowables and are acceptable.

Distance i to j

Stress Check:

Local	Stress Classifiaction		
SA-516 70N	Material		
	Allowed	Actual	Check
PI [psi] =	36,825	17,899	Acceptable
Pb [psi] =		12,000	
PI+Pb+Q [psi] =	73,700	27,532	Acceptable
Peak [psi] =		27,917	

SCL #6

Stress classification line 6 is taken through the head tangent line. The stress linearization results are below the material stress allowables and are acceptable.

Stress Check:

Local	Stress Cla	assifiaction	
SA-516 70N	Material		
	Allowed	Actual	Check
PI [psi] =	36,825	9,133	Acceptable
Pb [psi] =		5,299	
PI+Pb+Q [psi] =	73,700	14,315	Acceptable
Peak [psi] =		14,483	

SCL #7

Stress classification line 7 is taken through the head to shell transition. The stress linearization results are below the material stress allowables and are acceptable.

Stress Check:

Local	Stress Classifiaction		
SA-516 70N	Material		
	Allowed	Actual	Check
PI [psi] =	36,825	10,396	Acceptable
Pb [psi] =		3,336	
PI+Pb+Q [psi] =	73,700	12,799	Acceptable
Peak [psi] =		12,522	

SCL #8

Stress classification line 8 is taken through the shell to head transition. The stress linearization results are below the material stress allowables and are acceptable.

Stress Check:

Local	Stress Classifiaction		
SA-516 70N	Material		
	Allowed	Actual	Check
PI [psi] =	36,825	11,295	Acceptable
Pb [psi] =		9,375	
PI+Pb+Q [psi] =	73,700	18,736	Acceptable
Peak [psi] =		22,716	

Stress classification line 9 is taken through the shell (away from discontinuities). The stress linearization results are below the material stress allowables and are acceptable.

Stress Check:

Local	Stress Classifiaction		
SA-516 70N	Material		
	Allowed	Actual	Check
PI [psi] =	36,825	18,979	Acceptable
Pb [psi] =		205	
PI+Pb+Q [psi] =	73,700	19,181	Acceptable
Peak [psi] =		19,367	

Local Plastic Collapse

Local Plastic Collapse Check

The sum of the principal stresses shall be less than 4S (93,200 psi) per article 5.3.2. The maximum observed stress in the model is 72,535 psi which is within the allowable limit. Therefore, the model is acceptable.