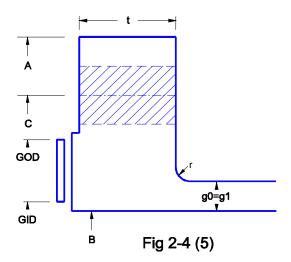
Pressure Vessel Engineering Ltd 120 Randall Drive, Suite B Waterloo, Ontario, Canada N2V 1C6 www.pveng.com info@pveng.com 519-880-9808


Pressure Vessel Engineering Ltd. provides: ASME Vessel Code Calculations - Finite Element Analysis (FEA) - Solid Modeling / Drafting - Canadian Registration Number (CRN) Assistance

Loads on Flanges - The ASME Way

ASME VIII-1 Appendix 2 provides a method of sizing flanges. The calculations use three loads - HT, HG & HD and two operating conditions - seating and operating. What are these loads, how are they calculated, and where are they applied to the flange?

A sample flange shown below will be calculated using ASME Appendix 2 methods and by finite element analysis (FEA) to illustrate the application of the loads and show the resulting stresses.

Sample flange (App 2 Fig 2-4(5)

Sample Flange Dimensions

Inside Diameter = B = 16.00"

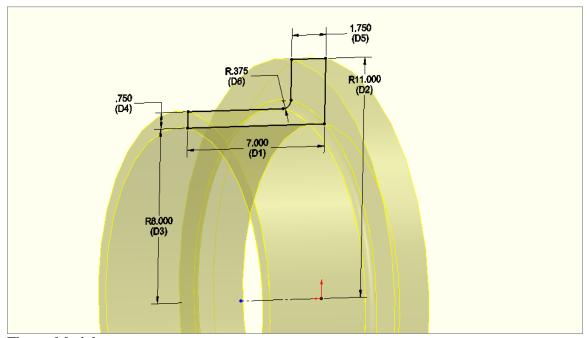
Outside Diameter = A = 22"

Thickness = t = 1.75

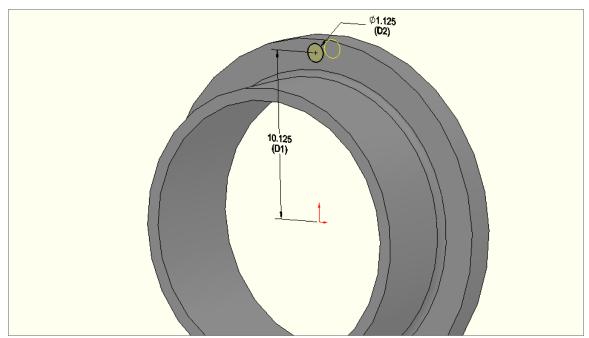
Hub radius = r = 0.375

Pipe thickness = g0 = 0.75

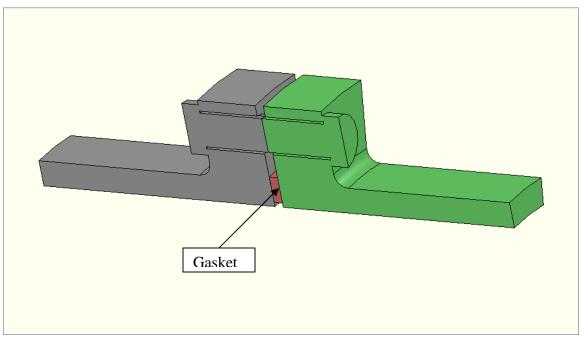
Gasket OD = 17.75"

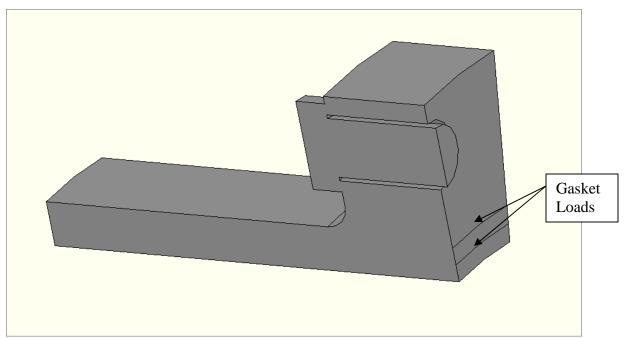

Gasket ID = 16.25"

Gasket m = 3


Gasket y = 10,000

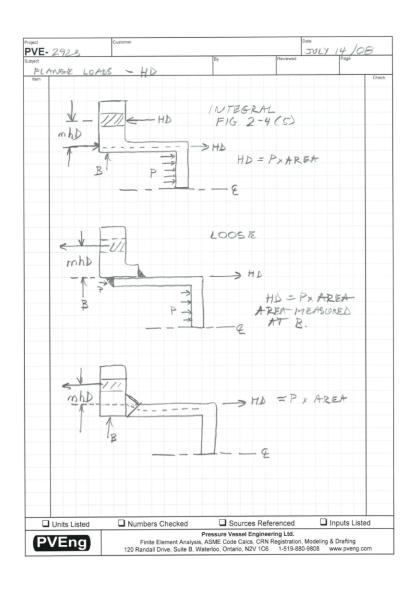
16 Bolts x 1" dia on a 20.25" BCD (C)


Sample flange - the FEA model


Flange Model

16 holes on 20.25" BCD, 1" bolt size - only 1/2 of one bolt will be used for the FEA model due to symmetry.

Half of the 1" bolt is added. A mirrored body creates a flanged pair.

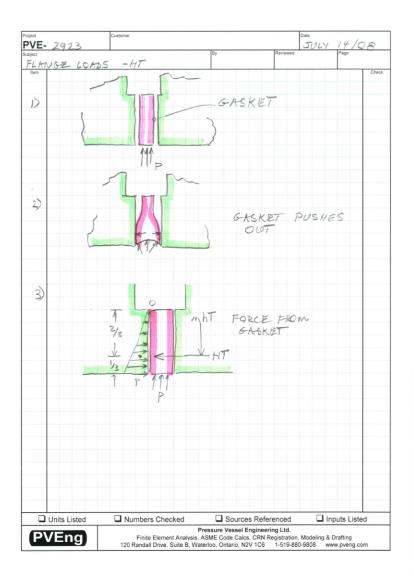


For FEA the bolt length is cut on the center of the gasket. The gasket is removed and is replaced by the loads it generates. Split lines can be seen where the gasket loads HT and HG are applied.

Load HD - Operating

HD is created by the pressure on the pipe attached to the flange. Force = Pressure x Area. $HD = P * B^2 / 4$

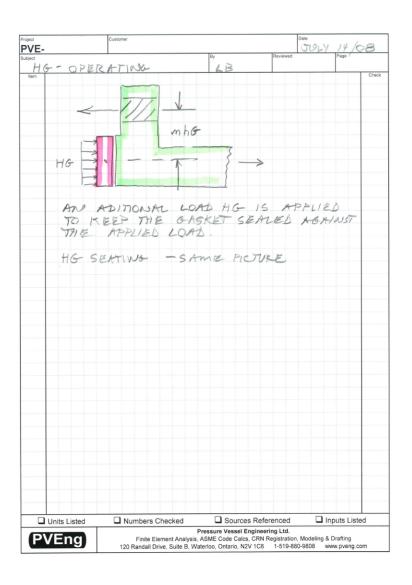
The load is generated on center line of the pipe, but the ASME rules change the moment arm depending on the attachment method. When FEA is performed, the load should be applied to the attached pipe - the FEA program will determine how the load is distributed.


Load HT - Operating

HT is created by the internal pressure acting on the gasket:

- 1) Pressure is applied to the exposed edge of the gasket
- 2) The gasket tries to expand but is held in place by the flange faces
- 3) The flange faces push back

The force between the gasket and the flange is shown as a triangle. The force is zero at the OD of the gasket (there is no pressure at the gasket OD and thus no leakage). At the inside edge, the pressure is the pressure in the pipe. HT is the average pressure along the length. mhT is measured at the point 1/3 up the triangle, the centroid of the force.


The ASME rules reduce the width of the gasket. This load is a design rule, not a predictor of actual flange stresses. For FEA analysis, the load HT is applied at the moment arm mhT away from the bolt centerline.

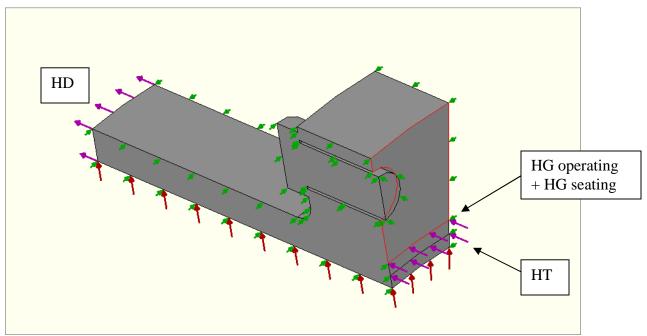
Load HG - Operating

HG operating is the force required to keep the flange sealed against the operating pressure. It is generated by tightening the bolts. Load = effective area x gasket factor m x Pressure. If the flange is self energizing (does not need additional force to seal such as an o-ring) then HG operating = 0

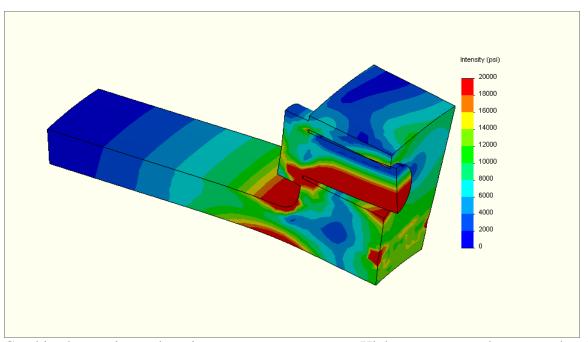
Load HG operates through the center of the gasket, but the gasket size is reduced by the ASME rules to create an effective area. Correlation to real gasket properties is difficult - this load and its moment arm is a design rule, not a predictor of actual flange stresses.

Load HG - Seating

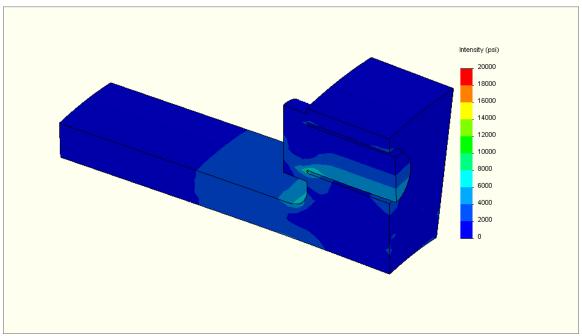
HG seating is the force required to seat the gasket into the flange gasket face and be leak tight against a pressure of 0 psi. (HG operating provides the load required to keep the seal as the operating pressure is increased).


The force HG is loosely based on gasket physical properties, but the gasket area used is modified (reduce) from the actual gasket width because the code y factors are too high. Correlation to real gasket properties is impossible - this load and its moment arm are a design rule, not a predictor of actual flange stresses.

Force HG has an additional load added to it - the "gasket destroying" or "gasket crushing" force. The computed seating load on the gasket is increased to the average of the required bolt strength and the available bolt strength. This code disaster greatly increases the required thickness of flanges far beyond the loads that the gasket can handle.


As a designer, when the seating loads are too large and are caused by extra bolt area, several options are available:

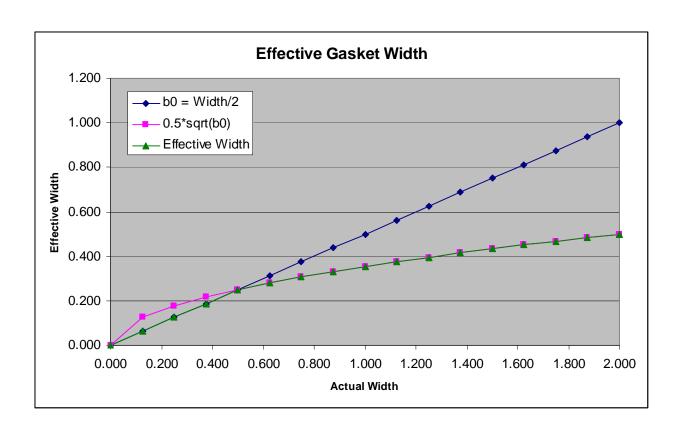
- 1) make the bolts smaller in diameter or fewer in number. Reducing the effective area of the bolts reduces this theoretical gasket crushing force.
- 2) use weaker bolts same idea as above.
- 3) if material waste and cost are no object, make the flange thicker. This route often is used when a custom appendix 2 flange must mate up to standard flanges such as B16.5 series which seldom calculate to appendix 2 rules.


ASME Loads Applied to the FEA Model

The flange model with the HD, HG and HT loads applied.

Combined operating and seating stresses case stresses. Higher stresses can be seen at the pipe to flange discontinuity. Bending stresses can also be seen in the bolt. Although the stresses look high compared with the 20,000 psi membrane allowable stress for the flange and pipe, the stresses are minor if compared with a local discontinuity limit of 3x20,000 psi. This flange design although loaded to the maximum ASME allows can be considered to be lightly loaded and wasteful of materials.

Operating loads only - used for cycle life calculations (seating HG is removed). The gasket gets seated once, this is the load that the flange sees with each application and removal of pressure. The flange loads are extremely light for this flange that was designed around the gasket seating case.


The Effective Seating Width of the Gasket

The effective seating width of the gasket removes the correlation between the physical properties of the gasket material, and the calculated gasket loads. The seating width is typically 1/2 * the square root of the actual gasket width (see table 2-5.2 for actual formulas which vary depending on the gasket seating arrangement and the gasket width). Traditionally, this was done to allow for rotation of the flanges under load which reduced the actual width of the gasket in contact with the flange faces (it was presumed that the inside edge of the gasket was not in contact). In reality, the ASME rules, including the flange rotation limits in 2-14, do not allow enough flange rotation for the gasket to be partially in contact. This effective width calculation removes any possible correlation between ASME flange calculation methods and flange manufacturers provided m and y values. It was probably introduced because the table 2-5.1 gasket factors are too high.

The seating and operating loads are design rules and should not be expected to predict actual flange stresses. They can be used in FEA analysis to simulate loads in a manner similar to App 2 methods as required by U-2(g).

Width	b0 = Width/2	0.5*sqrt(b0)	Effective Width
0.000	0.000	0.000	0.000
0.125	0.063	0.125	0.063
0.250	0.125	0.177	0.125
0.375	0.188	0.217	0.188
0.500	0.250	0.250	0.250
0.625	0.313	0.280	0.280
0.750	0.375	0.306	0.306
0.875	0.438	0.331	0.331
1.000	0.500	0.354	0.354
1.127	0.563	0.375	0.375
1.250	0.625	0.395	0.395
1.375	0.688	0.415	0.415
1.500	0.750	0.433	0.433
1.625	0.813	0.451	0.451
1.750	0.875	0.468	0.468
1.875	0.938	0.484	0.484
2.000	1.000	0.500	0.500

Effective width for a common gasket arrangement - Table 2-5.2 sketches (1a) and (1b)

Attachments

Attached are calculation sheets for:

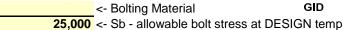
- ASME code calculation for this flange. This flange is limited by the seating case in this case seating of a high strength spiral wound gasket m=3, y=10,000.
 - FEA loads for the operating and seating case
 - FEA loads for the operating only case

Flanges ver 4.26 Page 2 of 3

```
varb = IF(b0>0.25,Sqrt(b0)/2,b0)
                                                     Effective seating width
                                                            IF(0.375>0.25,SQRT(0.375)/2,0.375) = 0.306
2
               varG = IF(b0>0.25,GOD-2*varb,(GOD-GID)/2 + GID)
3
                                           IF(0.375>0.25,17.75-2*0.306,(17.75-16.25)/2 + 16.25) = 17.138
                                                                                           0.375 = 0.375
                hub = rf
                            Length of Hub
    Bolt Loads: (VIII App 2-5)
6
    Bolt size and class: 1-8 UNC 2A
                   H = 0.785*varG^2*P
                                                                             0.785*17.138^2*100 = 23.055
                                           end load
8
                  He = 0.785*varG^2*Pe
                                            end load external pressure
                                                                               0.785*17.138^2*0 = 0
9
                 HP = 2*varb*3.14*varG*m*P
                                                                     2*0.306*3.14*17.138*3*100 = 9,886
                                                  contact load
10
                 HD = pi()/4 * B^2 * P
                                                                              PI()/4 * 16^2 * 100 = 20,106
                                          end load
11
                HDe = pi()/4 * B^2 * Pe
                                                                                 PI()/4 * 16^2 * 0 = 0
                                           end load external pressure
12
                 HT = H - HD
                                                                                  23055 - 20106 = 2,949
                                  face load
13
                HTe = He - HDe
                                    face load external
                                                                                            0 - 0 = 0
14
               Wm1 = H + HP
                                                                                   23055 + 9886 = 32,941
                                   bolt load
15
               Wm2 = pi()*varb*varG*gy
                                                                        PI()*0.306*17.138*10000 = 164,849
                                             seating load
16
                 Am = Max(Wm1/Sb, Wm2/Sba)
                                                     Bolt area required
17
                                                             MAX(32941/20000, 164849/20000) = 8.242
18
      RootArea [sq. in] = PVELookup("BoltSizing", "Lookup", "Root Area", BoltOD)
                                                                                                    0.566
19
                  Ab = RootArea*Nbolt
                                                                                        0.566*16 = 9.056
20
      CheckExcess = Ab>=Am
                                                                                   9.056 >= 8.242 = Acceptable
21
    Flange Loads: (App 2-5)
22
                \mathbf{W}_{\text{[lb]}} = (Am + Ab)*Sba/2
                                            seating conditions
                                                                        (8.242 + 9.056)*20000/2 = 172,984
23
               HG [lb] = Wm1 - H
                                                                                  32941 - 23055 = 9.886
                                    operating conditions
24
       TBoltLoad [lb] = (W+Wm1)/Nbolt
                                                                             (172984+32941)/16 = 12,870
25
    Flange Moment Arms: (Table App 2-6 - Integral flanges)
26
             mhD [in] = varR+0.5*gOne
                                                                                  1.375 + 0.5*0.75 = 1.750
27
             mhT [in] = (varR+gOne+mhG)/2
                                                                           (1.375+0.75+1.556)/2 = 1.841
28
             mhG [in] = (varC-varG)/2
                                                                                (20.25-17.138)/2 = 1.556
29
    Flange Moments: (App 2-6)
30
             MD [in-lb] = HD * mhD
                                     end pressure
                                                                                    20106 * 1.75 = 35,186
31
             MT_{\text{[in-lb]}} = HT * mhT
                                     face pressure
                                                                                    2949 * 1.841 = 5,428
32
             MG [in-lb] = HG * mhG
                                                                                    9886 * 1.556 = 15,384
                                      gasket load
33
           Mo1e [in-lb] = HDe^*(mhD-mhG)+HTe^*(mhT-mhG)
                                                               total operating external
34
                                                                 0*(1.75-1.556)+0*(1.841-1.556) = \mathbf{0}
35
            Mo1 [in-lb] = Max(MD+MT+MG,Mo1e)
                                                    total operating
36
                                                                    MAX(35186+5428+15384,0) = 55,998
37
            Mo2 [in-lb] = W*(varC-varG)/2
                                                                        172984*(20.25-17.138)/2 = 269,196
                                            total seating
38
    Graphs: App 2-7.1-6 Values of F, f, T, U, V, Y and Z
39
                  h0 = sqrt(B*g0)
                                                                                 SQRT(16*0.75) = 3.464
40
                hh0 = hub/h0
                                                                                     0.375/3.464 = 0.108
41
               g1g0 = gOne/g0
                                                                                       0.75/0.75 = 1.000
42
                   F = PVELookup("F","FlangeFactor",hh0,g1g0)
                                                                                                    0.909
43
                   V = PVELookup("V","FlangeFactor",hh0,g1g0)
                                                                                                    0.550
44
             smallF = 1
                                                                                                1 = 1.000
45
                   \mathbf{K} = A/B
                                                                                           22/16 = 1.375
46
                   T = PVELookup("T","FlangeFactorK",K)
                                                                                                    1.765
47
                   U = PVELookup("U","FlangeFactorK",K)
                                                                                                    6.877
48
                   Y = PVELookup("Y", "FlangeFactorK", K)
                                                                                                    6.258
49
                   Z = PVELookup("Z", "FlangeFactorK", K)
                                                                                                    3.246
50
                   d = (U/V)*h0*g0^2
                                                                       (6.877/0.55)*3.464*0.75^2 = 24.360
51
                   e = F / h0
                                                                                    0.909 / 3.464 = 0.262
52
                   L = (t*e + 1)/T + t^3/d
                                                           (1.75*0.262 + 1)/1.765 + 1.75^3/24.36 = 1.047
53
```

Flanges ver 4.26 Page 3 of 3

```
Flange Seating Stress: (App 2-7,8)
               SHs = smallF*ABS(Mo2) / ( L*gOne^2 * B)
                                                      1*ABS(269196) / ( 1.047*0.75^2 * 16) = 28,577
3
         CheckSHs = SHs <= 1.5*(Sfa)
                                                                     28577 \le 1.5*(20000) = Acceptable
               SRs = (1.33*t*e+1)*ABS(Mo2) / (L*t^2*B)
                                       (1.33*1.75*0.262+1)*ABS(269196) / (1.047*1.75^2*16) = 8,454
         CheckSRs = SRs <= Sfa
                                                                           8454 <= 20000 = Acceptable
               STs = (Y*ABS(Mo2) / (t^2*B)) - Z*SRs
                                            (6.258*ABS(269196) / (1.75^2*16)) - 3.246*8454 = 6,943
               SAs = (SHs + Max(SRs, STs))/2
                                                             (28577 + MAX(8454, 6943))/2 = 18,515
10
         CheckSTs = ABS(STs) <= Sfa
                                                                      ABS(6943) <= 20000 = Acceptable
11
         CheckSAs = SAs <= Sfa
                                                                          18515 <= 20000 = Acceptable
12
    Flange Operating Stress: (App 2-7,8)
13
               SHo = smallF*Mo1/(L*gOne^2*B)
                                                                1*55998/(1.047*0.75^2*16) = 5,945
14
         CheckSHo = SHo <= 1.5*(Sf)
                                                                      5945 \le 1.5*(20000) = Acceptable
15
               SRo = (1.33*t*e+1)*Mo1/(L*t^2*B)
16
                                              (1.33*1.75*0.262+1)*55998/(1.047*1.75^2*16) = 1,759
17
        CheckSRo = SRo <= Sf
                                                                           1759 <= 20000 = Acceptable
18
               STo = Y*Mo1/(t^2*B)-Z*SRo
                                                      6.258*55998/(1.75^2*16)-3.246*1759 = 1,444
19
         CheckSTo = STo <= Sf
                                                                           1444 <= 20000 = Acceptable
20
               SAo = (SHo+Max(SRo,STo))/2
                                                                (5945+MAX(1759,1444))/2 = 3,852
21
         CheckSAo = SAo <= Sf
                                                                           3852 <= 20000 = Acceptable
22
    Flange Flexibility: (App 2-14)
23
          Jseating = (52.14*Mo2*V) / (L*Efs*g0^2*h0*0.3)
24
                                   (52.14*269196*0.55) / (1.047*27900000*0.75^2*3.464*0.3) = 0.452
25
         CheckJSt = ABS(Jseating) <= 1
                                                                          ABS(0.452) \le 1 = Acceptable
26
        Joperating = (52.14*Mo1*V) / (L*Efo*g0^2*h0*0.3)
27
                                    (52.14*55998*0.55) / (1.047*27900000*0.75^2*3.464*0.3) = 0.094
28
         CheckJOp = ABS(Joperating) <= 1
                                                                          ABS(0.094) \le 1 = Acceptable
29
```


Ab = 5.172

Combined Loads (Operating + Seating Conditions) <- Description

12.0 <- Nbolt, number of bolts

Material Properties:

25,000 <- Sba - allowable bolt stress at ASSEMBLY temp

C GOD g1 g0 y

Fig 2-4 (6)

Calculated Dimensions:

g0 =	g0-corr	= 0-0		g0 =	0.000
gOne =	g1 - corr	= 0.99-0		gOne =	0.990
B =	B+2*corr	= 10.02+2*0	Corroded ID	B =	10.020
varR =	(varC-B)/2 - gOne	= (14.25-10.02)/2 - 0.99		varR =	1.125
varN =	(GOD-GID)/2	= (13.375-10.75)/2	Gasket Width in Contact	varN =	1.313
b0 =	varN / 2	= 1.313 / 2	gasket seating width	b0 =	0.656
varb =	min(Sqrt(b0)/2,b0)	= min(Sqrt(0.656)/2,0.65	6) eff seating width	varb =	0.405
varG =	max(GOD-2*varb,(GOD-0	GID)/2 + GID)	gasket load reaction diameter	varG =	12.565
=	max(13.375-2*0.405,(13.3	375-10.75)/2 + 10.75)			

Flange Loads (VIII App 2-5):

W

W

$H = 0.785*varG^2*P$	= 0.785*12.565^2*13	end load	H = 1,611	
HP = 2*varb*3.14*varG*m*P	= 2*0.405*3.14*12.565*0.5*13	contact load	HP = 208	
$HD = pi/4 * B^2 * P$	= pi/4 * 10.02^2 * 13	end load	HD = 1,025	
HT = H - HD	= 1611 - 1025	face load	HT = 586	
/m1 = H + HP	= 1611 + 208	bolt load	Wm1 = 1,819	
/m2 = pi*varb*varG*gy	= pi*0.405*12.565*0	seating load	Wm2 = 0	
Am = max(Wm1/Sb, Wm2/Sba)	$= \max(1819/25000, 0/25000)$	req bolt area	Am = 0.073	ĺ

Total Bolt Loads - lbs - (app 2-5):

Ab = Root*Nbolt

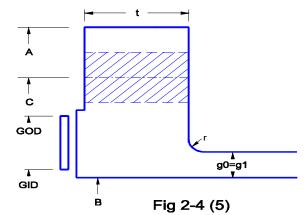
W = (Am + Ab)*Sba/2 = (0.073 + 5.172)*25000/2 seating conditions W = 65,559 HG = Wm1 - H = 1819 - 1611 operating conditions HG = **208**

= 0.431*12 7/8-9 UNC 2A

Flange Moment Arms - inch - (Table App 2-6 - Integral flanges):

Summary of Loads and Locations - Combined Operating and Seating - (lbs, inch) for ONE HALF bolt

Operating + Seating Conditions		ditions	
Load (Il	os)	Acting Rad	Loads for a model using ONE HALF bolt only
HT/(Nbolt*2)	24	5.646	Gasket face pressure (Operating)
(HG+W)/(Nbolt*2)	2,740	6.282	Gasket load (Seating + Operating)
HD/(Nbolt*2)	43	5.505	End pressure (Operating)
(Wm1+W)/(Nbolt*2)	-2,807	7.125	Bolt reaction balancing load (Seating +Operating)


Do not apply Wm1 + W - use boundary conditions on the bolt to apply this balancing load This model has a sweep of $360\%(Nbolt*2) = 15^{\circ}$ for one half bolt

Omit end pressure HD if a closed pipe end is modelled and pressurized

Operating Load Only <- Description

Dimensions and Conditions:

16.000	<- B - ID, uncorroded	
0.750	<- g1 - hub thickness	
0.000	<- Corr - corrosion allowance	
100.0	<- P, internal operating pressure	
17.750	<- GOD - gasket OD	
	<- GID - gasket ID	
3.00	<- m - gasket factor	
10,000	<- gy - gasket factor y	
20.250	<- varC - bolt circle dia	
1.000	<- BoltOD, bolt size	
16.0	Nhalt number of halts	

Material Properties:

Solting Material

20,000	<- Sb - allowable bolt stress at DESIGN temp
20,000	<- Sba - allowable bolt stress at ASSEMBLY temp

Calculated Dimensions:

g0 =	g0-corr	= 0-0		g0 =	0.000
gOne =	g1 - corr	= 0.75-0		gOne =	0.750
B =	B+2*corr	= 16+2*0	Corroded ID	B =	16.000
varR =	(varC-B)/2 - gOne	= (20.25-16)/2 - 0.75		varR =	1.375
varN =	(GOD-GID)/2	= (17.75-16.25)/2	Gasket Width in Contact	varN =	0.750
b0 =	varN / 2	= 0.75 / 2	gasket seating width	b0 =	0.375
varb =	min(Sqrt(b0)/2,b0)	= min(Sqrt(0.375)/2,0.37	(5) eff seating width	varb =	0.306
varG =	max(GOD-2*varb,(GOD-0	GID)/2 + GID)	gasket load reaction diameter	varG =	17.138
=	max(17.75-2*0.306,(17.75	5-16.25)/2 + 16.25)			
hub =	r	= 0	length of hub	hub =	0.000

Flange Loads (VIII App 2-5):

H =	0.785*varG^2*P	= 0.785*17.138^2*100	end load	H =	23,055
HP =	2*varb*3.14*varG*m*P	= 2*0.306*3.14*17.138*3*100	contact load	HP =	9,886
HD =	pi/4 * B^2 * P	= pi/4 * 16^2 * 100	end load	HD =	20,106
HT =	H - HD	= 23055 - 20106	face load	HT =	2,949
Wm1 =	H + HP	= 23055 + 9886	bolt load	Wm1 =	32,941
Wm2 =	pi*varb*varG*gy	= pi*0.306*17.138*10000	seating load	Wm2 =	164,849
Am =	max(Wm1/Sb, Wm2/Sba)	= max(32941/20000, 164849/20000)	req bolt area	Am =	8.242
Ab =	Root*Nbolt	= 0.566*16 1-8 UNC 2A		Ab =	9.056

Total Bolt Loads - lbs - (app 2-5):

W = (Am + Ab)*Sba/2	= (8.242 + 9.056)*20000/2	seating conditions	W =
HG = Wm1 - H	= 32941 - 23055	operating conditions	HG = 9,886

Flange Moment Arms - inch - (Table App 2-6 - Integral flanges):

mhD =	varR+0.5*gOne	= 1.375+0.5*0.75	end pressure	mhD =	1.750
mhT =	(varR+gOne+mhG)/2	= (1.375+0.75+1.556)/2	face pressure	mhT =	1.841
mhG =	(varC-varG)/2	= (20.25-17.138)/2	gasket load	mhG =	1.556

Summary of Loads and Locations - Combined Operating and Seating - (lbs, inch) for ONE HALF bolt

ı	Operating +	Seating Cor	nditions		
I	Load (lbs) Acting Rad		Acting Rad	Loads for a model using ONE HALF bolt or	nly
I	HT/(Nbolt*2)	92	8.284	Gasket face pressure (Operating)	
I	(HG+W)/(Nbolt*2)	309	8.569	Gasket load (Operating)	W removed, HG remains
I	HD/(Nbolt*2)	628	8.375	End pressure (Operating)	
I	(Wm1+W)/(Nbolt*2)	-1,029	10.125	Bolt reaction balancing load (Operating)	W removed, Wm1 remains

Do not apply Wm1 + W - use boundary conditions on the bolt to apply this balancing load This model has a sweep of 360%(Nbolt*2) = 11.25° for one half bolt

Omit end pressure HD if a closed pipe end is modelled and pressurized