

Table of Contents

Description	Page	Description	Page	
Cover	1	Top Lug	4	
Table of Contents	2		Bottom Lug	5
W24×94	3			

$65,000 W_{[b]}$ - Weight of the load
3 Nd - Design factor
Material:
SA-36 Material
36,000 $\mathrm{Fy}_{\text {[psi] }}$ - Yield strength
$58,000 \mathrm{Fu}$ [psi] - Tensile strength
29,000,000 $\mathrm{E}_{\text {[psi] }}$ - Modulus of elasticity
Dimensions:
$3.000 \mathrm{Dh}_{[\mathrm{in]}]}$ - Hole diameter
$10.000 \mathbf{w}[$ in $]$ - Width of lug
$1.000 \mathbf{t}$ [in] - Thickness of lug
$5.000 \mathbf{R}_{\text {[in] }}$ - Outer radius
0.625 Leg [in] - Weld leg height

Tensile Stress:

Ft ${ }_{\text {psi] }}=\mathrm{Fy} / \mathrm{Nd} \quad$ Allowable tensile stress (eq 3-1)
$\mathbf{A}_{\left[\mathrm{in}^{\wedge} 2\right]}=\mathrm{t}^{*}(\mathrm{w}-\mathrm{Dh}) \quad$ Area in tension
$\mathbf{S t}_{\text {}}^{\text {psi] }}=\mathrm{W} / \mathrm{A}$ Tensile stress
CheckSt $=\mathrm{St}<\mathrm{Ft}$

Shear Strength Through Pinhole:

$\mathbf{A v}$ [in $\left.{ }^{\wedge}\right]=2^{*}\left(\mathrm{R}-(\mathrm{Dh} / 2)^{*} \cos (\text { radians }(45))\right)^{*} t \quad$ Total area of two shear planes (eq 3-50)

$$
2^{*}\left(5-(3 / 2)^{*} \operatorname{COS}(\text { RADIANS }(45))\right)^{*} 1=7.879
$$

$\mathbf{P v}_{[b]]}=0.7^{*} \mathrm{Fu} /\left(1.2^{*} \mathrm{Nd}\right)^{*} \mathrm{Av} \quad$ Double plane shear strength (eq 3-49)
$0.7 * 58000 /(1.2 * 3)^{*} 7.879=88,854$
CheckPv = W < Pv $\quad 65000<88854=$ Acceptable

Shear Stress in Weld:

$$
\begin{aligned}
& \text { Exx } \text { [psi] }=\text { Fu Tensile strength of weld filler metal } \quad 58000=\mathbf{5 8 , 0 0 0} \\
& \left.\mathbf{F v}_{\text {[psi] }}=0.6^{*} \mathrm{Exx} /\left(1.2^{*} \mathrm{Nd}\right) \quad \text { Allowable weld shear stress (eq } 3-53\right) \quad 0.6^{*} 58000 /\left(1.2^{*} 3\right)=\mathbf{9 , 6 6 7} \\
& \mathbf{A w}\left[\mathrm{in}^{\wedge}\right]=\left(2^{*} \mathbf{W}+2^{*} \mathrm{t}\right) *\left(0.707^{*} \mathrm{Leg}\right) \quad \text { Area of the weld } \quad\left(2^{*} 10+2^{*} 1\right)^{*}\left(0.707^{*} 0.625\right)=9.721 \\
& \mathrm{Fw}_{[\mathrm{lb}]}=\mathrm{Fv}^{*} \mathrm{Aw} \quad \text { Allowable weld load } \\
& \text { CheckFw = W < Fw } \\
& 65000<93972=\text { Acceptable }
\end{aligned}
$$

Minimum Weld Throat: 3-3.4.3
throat_3-3 ${ }_{\text {[in] }]}=\quad \operatorname{IF}(\mathrm{K} 14<=0.25,0.125, \operatorname{IF}(\mathrm{~K} 14<0.5,0.188,(\operatorname{IF}(\mathrm{~K} 14<0.75,0.25,0.313))))$

$$
\operatorname{IF}(\mathrm{K} 14<=0.25,0.125, \mathrm{IF}(\mathrm{~K} 14<0.5,0.188,(\operatorname{IF}(\mathrm{~K} 14<0.75,0.25,0.313))))=\mathbf{0 . 3 1 3}
$$

check_throat $=$ Leg*0.707 >=throat_3-3
$65,000 \mathbf{W}_{[b]}$ - Weight of the load
${ }^{3} \mathrm{Nd}$ - Design factor
Material:
SA-36 Material
36,000 $\mathrm{Fy}_{\text {[psi] }}$ - Yield strength
$58,000 \mathrm{Fu}$ [psi] - Tensile strength
29,000,000 $\mathbf{E}_{\text {[psi] }}$ - Modulus of elasticity
Dimensions:
$2.000 \mathrm{Dh}_{\text {[n] }}$ - Hole diameter
$8.000 \mathbf{w}$ [in] - Width of lug
1.000 t [in] - Thickness of lug
$4.000 \mathbf{R}_{\text {[in] }}$ - Outer radius
0.625 Leg [in] - Weld leg height

Tensile Stress:

$\mathrm{Ft}_{\text {[psil }}=\mathrm{Fy} / \mathrm{Nd} \quad$ Allowable tensile stress (eq 3-1)
$\mathbf{A}_{\left[\mathrm{in}^{n} 2\right]}=\mathrm{t}^{*}(\mathrm{w}-\mathrm{Dh}) \quad$ Area in tension
$\mathbf{S t}_{\text {}{ }_{\text {psi }}=\mathrm{W} / \mathrm{A} \text { Tensile stress }}$
CheckSt $=\mathrm{St}<\mathrm{Ft}$

Shear Strength Through Pinhole:

$\mathbf{A} \boldsymbol{v}_{\left[\mathrm{n}^{\wedge} 2\right]}=2^{*}\left(\mathrm{R}-(\mathrm{Dh} / 2)^{*} \cos (\text { radians }(45))\right)^{*} \mathrm{t} \quad$ Total area of two shear planes (eq $\left.3-50\right)$

$$
2^{*}\left(4-(2 / 2)^{*} \operatorname{COS}(\operatorname{RADIANS}(45))\right)^{*} 1=6.586
$$

$\mathbf{P v}_{[b]}=0.7^{*} \mathrm{Fu} /\left(1.2^{*} \mathrm{Nd}\right)^{*} \mathrm{Av} \quad$ Double plane shear strength (eq 3-49)
$0.7 * 58000 /(1.2 * 3) * 6.586=74,273$
CheckPv = W < Pv $\quad 65000<74273=$ Acceptable

Shear Stress in Weld:

$$
\begin{aligned}
& \text { Exx } \text { [psi] }=\text { Fu Tensile strength of weld filler metal } \quad 58000=\mathbf{5 8 , 0 0 0} \\
& \mathbf{F v}_{\text {[psi] }}=0.6^{*} \mathrm{Exx} /\left(1.2^{*} \mathrm{Nd}\right) \quad \text { Allowable weld shear stress (eq 3-53) } \quad 0.6^{*} 58000 /\left(1.2^{*} 3\right)=\mathbf{9 , 6 6 7} \\
& \mathbf{A w}[\text { in } 2]=\left(2^{*} \mathbf{w}+2^{*} \mathrm{t}\right){ }^{*}\left(0.707^{*} \text { Leg }\right) \quad \text { Area of the weld } \quad\left(2^{*} 8+2^{*} 1\right)^{*}\left(0.707^{*} 0.625\right)=7.954 \\
& \mathrm{Fw}_{[\mathrm{lb}]}=\mathrm{Fv}^{*} \mathrm{Aw} \quad \text { Allowable weld load } \\
& \text { CheckFw = W < Fw } \\
& \begin{aligned}
\left(2^{*} 8+2^{*} 1\right) *\left(0.707^{*} 0.625\right) & =7.954 \\
9667^{*} 7.954 & =76,886
\end{aligned} \\
& 65000<76886=\text { Acceptable }
\end{aligned}
$$

Minimum Weld Throat: 3-3.4.3
throat_3-3 ${ }_{[i n]}=\quad \operatorname{IF}(\mathrm{K} 14<=0.25,0.125, \mathrm{IF}(\mathrm{K} 14<0.5,0.188$, ($\left.\mathrm{IF}(\mathrm{K} 14<0.75,0.25,0.313)))\right)$

$$
\operatorname{IF}(\mathrm{K} 14<=0.25,0.125, \operatorname{IF}(\mathrm{~K} 14<0.5,0.188,(\operatorname{IF}(\mathrm{~K} 14<0.75,0.25,0.313))))=0.313
$$

check_throat $=$ Leg*0.707 >=throat_3-3 $\quad 0.625^{*} 0.707>=0=$ Acceptable

