

Pressure Vessel Engineering Ltd.

120 Randall Drive, Suite B Waterloo, Ontario, Canada N2V 1C6 Tel. 519-880-9808 Fax 519-880-9810 info@pveng.com www.pveng.com

Finite Element Analysis (FEA) Report

Sample Job #22

Flange Analysis

123-456-ABC

May 21, 2009

PVE-3429 Rev.0

Ben Vanderloo Laurence Brundrett P. Eng.

1 of 20

Table of Contents ver 4.00

Page 2 of 20

Contents	Page
Cover	1
Table of Contents	2
Executive Summary	3
<u>SA-105</u>	4
<u>SA-193 B7</u>	5
Model, Mesh and Error	6
Flange Loads	7
Restraints and Loads 1	8
Restraints and Loads 2	9
Reaction Area	10
Reaction Forces	11 - 12
Bolt Stress	13
Displacement	14
Stress	15
Stress Linearization 1	16
Stress Linearization 2	17
Stress Linearization 3	18
References	19
Drawing - Flange	20

	Revision(s)		
Rev	Description	Date	By
0	Release	05/20/09	BV
1			
2			

Project Information:

	Sample Job	#22 Customer	
	Flange Analy	vsis Vessel / Component(s)	
	123-456-A	BC Part Number	
	PVE-3429 Re	ev.0 Job	
Solid	Norks CosmosWorks 2	B FEA Program Used	
	21-May-2	009 Date	
Max Pressure (psi)	@Temperature (F)	Maximum Allowed Working Pressure	
300	200	Maximum Anowed Working Flessure	

@ Pressure (psi)

300

Goal:

The flange, PVE-3429, will be used under ASME VIII-1 service. This flange cannot be calculated to ASME VIII-1 code rules due to the complexity of its geometry. The rules of VIII-2 are used with VIII-1 allowed stresses to determine the acceptability of the flange.

Maximum Design Metal Temperature

Summary Conclusions:

Max Operating Temp (F)

200

Materials

Material strength properties used in this report are obtained from ASME IID, Table 1A and Table 3. Stress classification limits are calculated to VIII-2 rules using ASME IID allowables for VIII-1. Properties are shown for the SA-105 carbon steel flange and the SA-197 B7 bolts.

Model Information

The model used in this report represents 1/4 of the flange. A 2nd order, tetrahedral solid mesh has been refined to 0.25" to reduce the reported error to less than 5% for general areas.

Restraints & Loads

All cut plane surfaces are restrained using symmetry. Bolts are simulated using the COSMOS connector utility. These bolts hold the flange in the seated position. Flange loads are calculated and applied to the effective gasket area. The flange is internally pressurized to 300 psi. The model is restrained in all directions and rigid body motion is prevented.

Results

Through the FEA we found a 0.0014" maximum displacement. All general membrane stresses are below the 20,000 psi general allowable. All local membrane stresses have been proven acceptable after linearization. All stresses are below their respective membrane allowables. The flange design is acceptable.

Analysis Conclusion:

The flange meets ASME VIII-2 design rules using VIII-1 allowed stresses. The flange design is acceptable.

1	Material Stress Limits ver 4.00 ASME VIII-2 Fig 4-130.1	Page 4 of 20
2	Material:	
3	SA-105 Material	
4	Flange Application	
	Of an and a second seco	
5	Strength Properties:	
6	200 T m temperature	
7 8	200 Sm [sei] basic allowable stress at temperature T	
9	Sv Ipsil vield stress at temperature T (optional)	
10	1.0 \mathbf{k}_{\parallel} - stress intensity k factor	
11	1.00 E1 I - weld efficiency factor	
12	1.00 E2 I - casting efficiency factor	
13	FEA Properties:	
14	ASME VIII-IID, 2007 Table 1A Source of FEA properties	
15	28,800,000 E [psi] - modulus of elasticity (at temperature)	
16	0.31 v 🛛 - Poison's ratio	
17	Stress Limits:	
18	Pm = k*E1*E2*Sm general primary membrane stress intensity limit	
19	1*1	1*1*20000 = 20,000
20	PI = 1.5*k*E1*E2*Sm local membrane stress intensity limit	
21	1.5*1*1	1*1*20000 = 30,000
22	PI+Pb = 1.5*k*E1*E2*Sm primary membrane + primary bending stress intensity	limit
23	1.5*1*1	1*1*20000 = 30,000
24	PI+Pb+Q = Max(3*F1*F2*Sm 2*F1*F2*Sv) primary + secondary stress intensity	
25	MAX(3*1*1*2000	0,2*1*1*0) = 60,000
	BL PhyOrE – Use fatigue curves – pack strass intensity limit	-, -, -,
26	FITEDTQTF = Use langue cuives peak suess intensity innit	
27	Comments:	
28	$(A) \cap (A \cap A) = (A \cap A) $	14
29	 (1) Sy material property is not required, more conservative PI+Pb+Q limits might be computed without (2) Refer to VIII-2 Table AD-150.1 for k values 	it.
29 30	 (1) Sy material property is not required, more conservative PI+Pb+Q limits might be computed without (2) Refer to VIII-2 Table AD-150.1 for k values (3) The thermal expansion coeficient is only required for studies including thermal stresses 	it.
29 30 31	 (1) Sy material property is not required, more conservative PI+Pb+Q limits might be computed without (2) Refer to VIII-2 Table AD-150.1 for k values (3) The thermal expansion coeficient is only required for studies including thermal stresses (4) Refer to VIII-2 App 4-130 and following for the Pm, PI, Q and F stress limits 	it.

34 (7) Use IID tables 1A and 2A for Sm values (S) for VIII-1 studies

(8) Use B31.1 Table A for Sm values for B31.1 studies

36 (9) Use B31.3 Table A for Sm values for B31.3 studies

Bolt Stress Limits ver 4.00 ASME VIII-2 4-140

2	Material:
3	SA-193 B7 Material
4	Flange Bolts Application
5	Strength Properties:
6	ASME VIII-IID, 2007 Table 3 Source of strength properties
7	200 T [PF] temperature
8	25,000 Sm [psi] basic allowable stress at temperature T
9	FEA Properties:
10	ASME VIII-IID, 2007 Table 3 Source of FEA properties
11	29,000,000 E [psi] - modulus of elasticity (at temperature)
12	0.30 v 0 - Poison's ratio
13	Service Stress Limits for Seating + Operating Loads: 4-140
14	Pm = 2*Sm membrane stress intensity limit at location without stress concentration
15	2*25000 = 50,000
16	Pm+Pb = 3*Sm membrane + bending stress limit at at location without stress concentration
17	3*25000 = 75,000
18	PI+Pb+Q+F = Use fatigue curves peak stress intensity limit
19	Comments:
20	(1) The thermal expansion coeficient is only required for studies including thermal stresses
21	(2) Use IID table3 for Sm for VIII-2 studies
22	(3) Use IID table 3 for Sm values (S) for VIII-1 studies

Page 5 of 20

23 (4) Use B31.1 Table A for Sm values for B31.1 studies

24 (5) Use B31.3 Table A for Sm values for B31.3 studies

18	Flange L	oads for FEA ver 1.2	ASME VIII div 1	Арр 2	Page	7 of 20
))	Flange Loads <- Description					
1	Dimensions and Conditions:					
4	10.000	<- B - ID, uncorroded				
1	1.000	<- g1 - hub thickness		• • • • • • • • • • • • • • • • • • • •	7	
2	0.000	<- Corr - corrosion allowance		A ///////		
3	300.0	<- P, internal operating pressure			~	
5	12 000	< COD gasket OD				
6	10.000		-		+	
7	10.000	<- m - gasket factor		<u>,</u>		
	200	< av - dasket factor v			77	
)	200	<- gy - gasker lactor y				
2	13.500	<- varC - bolt circle dia				
3	0.750	<- BoltOD, bolt size	f			
1	20.0	<- Nbolt, number of bolts	EOD			
1	Material Prop	erties:		g	í/////	
2	SA-193 B7	<- Bolting Material	f			
3	25.000	<- Sb - allowable bolt stress at DES	SIGN temp	+		
1	25,000	<- Sba - allowable bolt stress at AS	SEMBLY temp	В		
•	Coloulated Di					
11		al corr	-10		aOno -	1 000
12	gone =	g1 - coll B+2*corr	= 1-0 - 10+2*0	Corredod ID	gone = B =	10 000
21	D =	$b_{\tau z} c_{011}$	= 10+2 0 = (13.5.10)/2 1	Conoded ID	VorP –	0 750
26	varN =		=(13.3-10)/2-1 =(12.10)/2	Cooket Width in Contact	varN –	1 000
29	h0 –	(GOD-GID)/2	=(12-10)/2	Gasket Width In Contact	b0 =	0.500
30	varb –	min(Sart(b0)/2 b0)	= 1/2 = min(Sart(0.5)/2.0.5)	off sosting width	varb -	0.354
31	varG –	max(GOD-2*varb (GOD-GID)/2 + (asket load reaction diameter	varG –	11 203
32	vaio = =	max(12-2*0.354,(12-10)/2 + 10)		gaskel load reaction diameter	valo –	11.235
45						
46	Flange Loads	(VIII App 2-5):				
47	H =	0.785°VarG/2°P	= 0.785*11.293*2*300	end load	H =	30,048
49	HP =	2°varb*3.14°varG*m*P	= 2*0.354*3.14*11.293*1*3	300 contact load	HP =	7,522
54	HD =		$= p1/4 + 10^{1}/2 + 300$	end load	HD =	23,562
58	HI =		= 30048 - 23562	face load	HI =	0,480
51	VVm1 =		= 30048 + 7522	bolt load	VVm1 =	37,571
62	vvm2 =	prvarb varG gy	$= p1^{\circ}0.354^{\circ}11.293^{\circ}200$	seating load	VV m =	2,509
57	Am =	max(wm1/Sb, wm2/Sba)	$= \max(37571/25000, 2509/250)$	100) req bolt area		1.003
58	AD =		= 0.31 20 3/4-10 ONC 2A		AD =	0.200
71	Total Bolt Loa	ids - Ibs - (app 2-5):				
72	W =	(Am + Ab)*Sba/2	= (1.503 + 6.2)*25000/2	seating conditions	W =	96,285
73	HG =	Wm1 - H	= 37571 - 30048	operating conditions	HG =	7,522
75	Flange Mome	nt Arms - inch - (Table App 2-6 - I	ntegral flanges):			
82	mhD =	varR+0.5*gOne	= 0.75+0.5*1	end pressure	mhD =	1.2500
83	mhT =	(varR+gOne+mhG)/2	= (0.75+1+1.104)/2	face pressure	mhT =	1.4268
84	mhG =	(varC-varG)/2	= (13.5-11.293)/2	gasket load	mhG =	1.1036
91	Mavg =	(HT*mhT+(HG+W)*mhG)/(HT+HG	+W)	average gasket moment arm	Mavg =	1.1226
92	=	(6486*1.427+(7522+96285)*1.104))/(6486+7522+96285)			
55	Summary of L	oad Conditions				
57	FOD =	varC-2*Mavg+varb	= 13.5-2*1.123+0.354	eff rasket OD	FOD =	11.6084
58	FID =	varC-2*Mavg-varb	= 13.5-2*1.123-0.354	en gasner UD eff nasket ID	FID =	10.9013
59	TG =	HT+HG+W	= 6486+7522+96285	total dasket load	TG =	110.294
62	HD =	HD	0.000.00L00	flange end load	HD =	23.562
<i>,</i> ,,2	10-	=		hange end load		_0,002

Apply TG to the gasket face surface between EOD and EID in the model
 Omit end load HD if a closed pipe end is modeled and pressurized
 TG and HD are for a complete 360° flange model. Reduce if symmetry is used.

Reaction Forces ver 4.08

Bolt	Stress	S ver 4.00					Page 13 of	20
		Highe	est Stresse	d Bolt #	5 Description	1	5	
Inputs:								
putor	UNC	Bolt Type	•					
	3/4	Dia [in] Noi	minal Bolt S	Size (UNC	C)			
	25,000	Sm [psi] All	owable Bol	t Stress	,			
J:\3400-3	3499\PVE-34	29 Complex	Flange FEA\b	olt data.cs	v File Location	n		
T۱	vpe	X	Y	Z	Resultant	Connector	1	
SF	F (lb)	125.51	0.00	19.89	127.08	•••••••	Shear Force	
AF	F (lb)	0.00	-6693	0.00	6692.70	Bolt Connector-5	Axial Force	
BM	(lb-in)	21.56	0.00	-136.04	137.73		Bend Moment	
	PDia ma -	D\/ELooku	n/"BoltDia"	"Lookun	" "Root Dia" D	a) Root Diamotor	0.627	,
			ip("BoltDia" in("BoltDia"	"Lookup	", 1001 Dia ,D " "AF" Dia)	Head Diameter	1 125	
	Δ [in/2] =	π*RDia^2)/4 cross s	sectional ar	, АГ, ЫА) геа	(3 142*0 ($627^2)/4 = 0.309$, ,
	C fin] =	RDia/2	moment arm l	enath	04	(0.112 0.	0.627/2 = 0.314	
	[in/4] =	(π*(RDia/2	2)^4)/4 m	ioment of ir	ertia	(3.142*(0.627	$7/2$ $^{4}/4 = 0.007$	586
	PL пы =	0.9*Sm*A	bolt preloa	ad force		0.9*2500)0*0.309 = 6947	
Shear S	Stress:							
	SSx [psi] =	SFx/A				125.5	51/0.309 = 406	
	SSy [psi] =	SFy/A					0/0.309 = 0	
	SSz [psi] =	SFz/A				19.8	39/0.309 = 64	
Axial S	tress:							
	SAx [psi] =	AFx/A					0/0.309 = 0	
	SAy [psi] =	AFy/A				-6692	.7/0.309 = -21,6	76
	SAz [psi] =	AFz/A					0/0.309 = 0	
Von Mis	ses:							
	σ [psi] =	SQRT(((S	Ax-SAy)^2+	-(SAy-SA	z)^2+(SAz-SA	x)^2+6*(SSx^2+SSy/	^2+SSz^2))/ <u>2)</u>	
		SQR	Г(((02167	6)^2+(-2´	1676-0)^2+(0-0	0)^2+6*(406^2+0^2+6	64^2))/2) = 21,68	8
	Checko =	σ<= 2*Sm				21688<=	2*25000 = Acce	ptabl
Bendin	g Stress:							
	M [lb-in] =	137.73					= 138	
	SB [psi] =	M*C/I				138*0.314/0	.007586 = 5,691	
Р	PmPb [psi] =	Max(abs(c	+SB),abs(o	ס-SB))				
				I	MAX(ABS(216	88+5691),ABS(2168	8-5691)) = 2737 9	9
Cheo	ckPmPb =	PmPb<= 3	s*Sm			27379<=	3*25000 = Acce	ptabl
Г								1
					Bolt Stress			
[30000						1	
	25000							
	÷ 20000			_				
	a)						M+B	
	S 15000						Membrane	
	J0000							
	5000 -							
	1				2		3	
				Lo	cation			
								-

References ver 4.00

Reference List:

Please refer to the following links for additional information;

Including reference components in an FEA to provide appropriate boundary and load conditions. <u>http://www.pveng.com/documents/content_80.pdf</u>

The use and effects of 2nd order integration elements. http://www.pveng.com/documents/content_151.pdf

Mesh Refinement Using the Error Function Results for Areas at Discontinuities. <u>http://www.pveng.com/documents/content_250.pdf</u>

Mesh Refinement Using the Error Function Results for Areas near Discontinuities. <u>http://www.pveng.com/documents/content_251.pdf</u>

Error Plots for Bolt Heads and Surface to Surface Contacts Areas. http://www.pveng.com/documents/content_248.pdf

FEA Software Validation - A comparison to theoretical results. http://www.pveng.com/documents/content_249.pdf

COSMOSWorks Validation Examples. http://www.pveng.com/documents/content_247.pdf

